Bridging the gap between post mortem microscopic and in vivo macroscopic connectivity
Leegaard et al's article is a worthy summary of recent efforts to map the brain's connections at various levels of detail and the benefits that we would realize from cross-validating them. Here is one example:
Using the same approach, Axer et al. (2011b) show how 3-D [polarized light imaging] derived fiber orientation vectors can subsequently be used as a basis for high-resolution tractography of fiber tracts, potentially suitable for bridging microscopic and macroscopic connectome representations. The importance of correlating various non-invasive MRI derived measurements to cellular-level morphological data is also emphasized by Annese (2012), presenting the perspective that whole-brain histological maps (Figures 1E,F) created using large-scale digital microscopy spanning several histological modalities will support the analysis and interpretation of MRI-based connectivity studies.
They also have an awe-inspiring figure showing off the results of many different new techniques.
A, B = diffusion MRI in vivo; C, D = detailed fiber architecture via 3-d polarized light imaging (ex vivo); E, F = digital histology of tract stained for myelin; G = combined optogenetics and fMRI; H = knife edge scanning microscopy; I = GUI of the Human Connectome Project; J = data mining to reconstruct hippocampal connections; K = connectivity-based cortical parcelation; L, M = GUI of the Connectome Viewer; N = structural network motifs; O = connectome matrix of the rat brain; P = connectome matrix of the rat hippocampus; Q = a model of connectivity in the developing tapdole spinal cord; doi: 10.3389/fninf.2012.00014
Reference
Leergaard TB, Hilgetag CC and Sporns O (2012) Mapping the connectome: multi-level analysis of brain connectivity. Front. Neuroinform. 6:14. doi: 10.3389/fninf.2012.00014